Atividade Antibacteriana de Extratos Padronizados de Origanum vulgare e Rosmarinus officinalis Contra Espécies de Curtobacterium e Xanthomonas
DOI:
https://doi.org/10.21664/2238-8869.2023v12i1.p110-122Palabras clave:
antibacteriano natural, agricultura sustentávelResumen
Diseases caused by Curtobacterium and Xantomonnas species represent an agricultural problem in crops and can generate economic impacts on the commercialization of seeds and food. Origanum vulgare L. (oregano) and Rosmarinus officinalis L. (rosemary) have rosmarinic acid and others phenolics that can lead to the control of phytopathogenic bacteria in common bean (Phaseolus vulgaris L.). This study aimed to evaluate the in vitro and in vivo antibacterial activity of O. vulgaris and R. officinalis extracts, standardized in rosmarinic acid, against Curtobacterium flaccumfaciens pv. flaccumfaciens, Xanthomonas axonopodis pv. phaseoli, Xanthomonas fuscans subsp. fuscans and Xanthomonas sp. The antibacterial effect of the extracts in bean seed was also investigated. The content of rosmarinic acid was 8.55 % for O. vulgare and 16.30 % for R. officinalis extract. It was verified the complete in vitro inhibition of the bacteria studied by both extracts at 0.8% (w/w) with exception of Xanthomonas axonopodis pv. phaseoli BRM 025302 that was completely inhibited at 1.2% (w/w) of oregano. In addition, no symptom of phytotoxicity were noted in detached bean leaves treated with them. Under greenhouse conditions, some reduction on severity of Curtobacterium wilt by both extracts at 1% (w/w) was noted to bean cultivars BRS Sublime and BRS Estilo. Under the experimental conditions these extracts were not efficient to control the common bacterial blight caused by X. axonopodis pv. phaseoli. Both extracts are promising in the treatment of seeds, specially in related to contamination by Fusarium spp., whose percentage decreased on average an average from 94% to 10%. In addition, these bean seeds maintained the germination percentage adequate to that required by legislation. Further studies must be conducted to better investigate the potential of these standardized extracts as a bioproduct for agriculture.
Citas
Altundag S, Aslim B, Ozturk S 2011. In vitro Antimicrobial activities of essential oils from Origanum minutiflorum and Sideritis erytrantha subsp. erytrantha on phytopathogenic bacteria. J Essent Oil Res 3(1):4-8.
Babu S, Satish S, Mohana DC, Raghavendra MP, Raveesha KA 2007. Antibacterial evaluation and phytochemical analysis of some Iranian medicinal plants against plant pathogenic Xanthomonas pathovars. J Agric Technol 3(2):307-316.
BRASIL 2009. Ministério da Agricultura, Pecuária e Abastecimento. Manual de Análise Sanitária de Sementes, 1 ed., Diário Oficial da República Federativa do Brasil, 202 p. Brasília, DF.
BRASIL 2013. Ministério da Agricultura, Pecuária e Abastecimento. Instrução Normativa nº 45 de 17 de setembro de 2013. Instrução Normativa a produção e a comercialização de sementes. Diário Oficial da República Federativa do Brasil, 22 p. Brasília, DF.
Canelas V, Costa CT 2007. Quantitative HPLC analysis of rosmarinic acid in extracts of Melissa officinalis and spectrophotometric measurement of their antioxidant activities. J Chem Educ 84(9):1502.
Carvalho JCB, Chaibub AA, Sousa KCI, Brito DC, Filippi MCC, Kato L, Araujo LG 2021. Efficiency of a new Waitea circinata extract against rice pathogens Pesq Agropec Trop 51(e66916):1-9.
Cassal VB, Azevedo LF, Ferreira RP, Silva DG, Simão RS 2014. Pesticides: a review of their consequences for public health. Rev Eletrônica Gest, Educ Tecnol Ambient 18(1): 437-445.
Catara V, Cubero J, Pothier JF, Bosis E, Bragard C, Dermić E, Holeva MC, JAcques MA, Petter F, Pruvost O, Robène I, Studholme DJ, Tavares F, Vicente JG, Koebnik R, Costa J 2021. Trends in molecular diagnosis and diversity studies for phytosanitary regulated Xanthomonas. Microorganisms 9(4):862-893.
Côrtes MVCB, Lima DCS, Silva-Lobo VL, Filippi MCC, PrabhU AS 2012. Inibição do desenvolvimento micelial de Magnaporthe oryzae por metabólito extracelular produzido por Sarocladium oryzae. Boletim de Pesquisa e Desenvolvimento da Embrapa Arroz e Feijão, 37, Embrapa Arroz e Feijão, Santo Antônio de Goiás, 12pp.
Dal’maso EG 2014. Detecção de Xanthomonas axonopodis pv. phaseoli em sementes, aspectos fisiológicos e proteção do feijoeiro contra o crestamento bacteriano comum usando extratos hidroalcoólicos de alecrim e cúrcuma e Pycnoporus sanguineus. Dissertação de Mestrado, Universidade Estadual do Oeste do Paraná, Marechal Cândido Rondon, 43 pp.
Djordjevic M, Djordjevic O, Djordjevic R, Mijatovic M, Kostic M, Todorovic G, Ivanovic M 2013. Alternative approach in control of tomato pathogen by using essential oils in vitro. Pak J Bot 45(3):1069-1072.
Hossain MB, Rai DK, Brunton NP, Martin-Diana AB, Barry-Ryan C 2010. Characterization of phenolic composition in Lamiaceae spices by LC-ESI-MS/MS. J Agric Food Chem 58(19):10576-10581.
Khan RA 2018. Natural products chemistry: The emerging trends and prospective goals. Saudi Pharm J 26(5):739-753.
Itako AT, Tolentino Junior JB, Raduan JLFP, Mattos AP, Santos KL, Ciotta MN 2021. Effect of essential oils on the development of Colletotrichum sp. fungus in fragments of Feijoa sellowiana fruits. Acta Sci Biol Sci 43(e53055):1-8.
Kostic M, Zlatkovic B, Miladinovic B, Živanovic S, Mihajilov-Krstev T, Pavlovic D, Kitic D 2015. Rosmarinic acid levels, phenolic contents, antioxidant and antimicrobial activities of the extracts from Salvia Verbenaca L. obtained with different solvents and procedures. J Food Biochem 39:199-208.
Maia AJ, Schwan‑Estrada KRF, Faria CMDR, Oliveira JSB, Jardinetti VA, Batista BN 2014. Rosemary essential oil in the control of diseases and induction of resistance in grapevine. Pesqui Agropecu Bras 49(5):330-339.
Paiva BAR, Wendland A, Teixeira NC, Ferreira MASV 2020. Rapid detection of Xanthomonas citri pv. fuscans and Xanthomonas phaseoli pv. phaseoli in common bean by loop-mediated isothermal amplification. Plant Dis 104(1): 198-203.
Rava CA 1984. Patogenicidade de isolados de Xanthomonas campestres pv. Phaseoli. Pesqui Agropecu Bras 19:445-448.
Romero AL, Romero RB, Silva EL, Diniz SPSS, Oliveira RR, Vida JB 2015. Chemical composition and activity of Origanum vulgare essential oil against phytopathogenic fungi. J Health Sci 14(4):231-235.
Rongai D, Pulcini P, Di Lernia G, Nota P, Preka P, Milano F 2019. Punicalagin content and antifungal activity of different Pomegranate (Punica ganatum L.) genotypes. Horticulturae 5(3), 52-61.
Sales MDC, Costa HB, Fernandes PMB, Ventura JÁ, Meira DD 2016. Antifungal activity of plant extracts with potential to control plant pathogens in pineapple. Asian Pac J Trop Biomed 6(1): 26-31.
Sertkaya E, Kaya K, Soylu S 2010. Acaricidal activities of the essential oils from several medicinal plants against the carmine spider mite (Tetranychus cinnabarinus Boisd.) (Acarina: Tetranychidae). Ind Crop Prod 31(1): 107-112.
Shabana YM, Abdalla ME, Shahin AA, El-Sawy MM, Ibrahim S, Draz IS, Youssif AW 2017. Efficacy of plant extracts in controlling wheat leaf rust disease caused by Puccinia triticina. Egypt J Basic Appl Sci 4(1):67-73.
Simas DLR, Amorim SHBM, Goulart FRV, Alviano CS, Alviano DS, Silva AJR, 2017. Citrus species essential oils and their components can inhibit or stimulate fungal growth in fruit. Ind Crop Prod 98(1):108-115.
Tocci N, Weil T, Perenzoni D, Narduzzi L, Madriñán S, Crockett S., Nürk NM, Cavalieri D, Mattivi F 2018. Phenolic profile, chemical relationship and antifungal activity of Andean Hypericum species. Ind Crop Prod 112(1):32-37.
Valdo SCD, Wendland A, Araújo LG, Melo LC, Pereira HS, Melo PG, Faria LC 2016. Differential interactions between Curtobacterium flaccumfaciens pv. flaccumfaciens and common bean. Genet Mol Res 15(4):1-16.
Valentini G, Guidolin AF, Baldissera JNC, Coimbra JLM 2010. Curtobacterium flaccumfaciens pv. flaccumfaciens: etiology, detection and control strategies. Biotemas 23(4):1-8.
Varejão EVV, Demuner AJ, Barbosa LCA, Barreto RW, Vieira BS 2013. Phytotoxicity of Alternaria euphorbiicola culture filtrates in Euphorbia heterophylla leaves. Planta Daninha 31(1):1-9.
Varjani SJ, Taherzadeh MJ, Khanal SK, Pandey A 2020. New horizons in biotechnology: Advances in sustainable industrial and environmental bioprocesses and bioproducts. Ind Crop Prod 158(15):113000.
Vigo SC, Maringoni AC, Câmara RC, Lima GPP 2009. Action of medicinal plants tinctures and essential oils to the bean common bacterial blight and on protein production of resistance induction. Summa Phytopathol 35(4):293-304.
Wendland A, Lobo Júnior M 2018. Integrated Management of Common Bean Diseases. In: Campos-Vega R, Bassinelo PZ, Dave Oomah B (Org.). Integrated Management of Common Bean Diseases. Vol. 1. Nova Science Publishers Inc., New York, p.115-142.
Wendland A, Alencar NE, Melo LC, Costa JGCC, Del Peloso MJ, Pereira HS, Faria LC, Ferreira EPDB, Côrtes MVCB 2009. Symptom pattern of common bean genotypes inoculated with different isolates of Curtobacterium flaccumfaciens pv. flaccumfaciens. Annu Rep Bean Improv Coop 52: 70-71.
Yazdani D, Tan YH, Abidin MAZ, Jaganath IB 2011. A review on bioactive compounds isolated from plants against plant pathogenic fungi. J Med Plant Res 5(30): 6584-6589.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Esta revista oferece acesso livre imediato ao seu conteúdo, seguindo o princípio de que disponibilizar gratuitamente o conhecimento científico ao público proporciona maior democratização mundial do conhecimento.
A partir da publicação realizada na revista os autores possuem copyright e direitos de publicação de seus artigos sem restrições.
A Revista Fronteiras: Journal of Social, Technological and Environmental Science segue os preceitos legais da licença Creative Commons - Atribuição-NãoComercial 4.0 Internacional.