Classical and Quantum Optics and Their Influences on Science and Society

Authors

  • Cristino Jose dos Santos Ferreira Universidade Federal da Paraíba, UFPB, Brasil.
  • Gabriela Rodrigues Vaz Universidade Estadual de Goiás, UEG, Brasil.
  • Clodoaldo Valverde Universidade Estadual de Goiás, UEG, Brasil; Universidade Paulista, UNIP, Brasil.
  • Basílio Baseia Universidade Federal de Goiás, UFG, Brasil.

DOI:

https://doi.org/10.21664/2238-8869.2019v8i2.p104-131

Keywords:

Classical and Quantum Optics, Maxwell's Equations, Nonlinear Effects, Laser Light Applications

Abstract

In this work we present a brief history of Optics, begun several centuries BC in its evolution characterized as Classical Optics; later on, this theory became also characterized as Quantum Optics. The first of these two theories was completed in the great work of J. C. Maxwell while the second actually started in 1977 with the discovery of the first quantum effect in Optics, having in Roy Glauber one of its greatest representatives. Here, a quick walk along these two theories was made, including the various technological applications of both in science and society

Author Biographies

Cristino Jose dos Santos Ferreira, Universidade Federal da Paraíba, UFPB, Brasil.

Doutorado em andamento em Física pela Universidade Federal da Paraíba, UFPB, Brasil.

Gabriela Rodrigues Vaz, Universidade Estadual de Goiás, UEG, Brasil.

Graduação em Física pela Universidade Estadual de Goiás, UEG, Brasil.

Clodoaldo Valverde, Universidade Estadual de Goiás, UEG, Brasil; Universidade Paulista, UNIP, Brasil.

Doutorado em Física Computacional pela Universidade Federal de Goiás, UFG, Brasil. Docente na Universidade Estadual de Goiás, UEG, Brasil; e na Universidade Paulista, UNIP, Brasil.

Basílio Baseia, Universidade Federal de Goiás, UFG, Brasil.

Doutorado em Física pela Universidade de São Paulo, USP, Brasil. Docente na Universidade Federal de Goiás, UFG, Brasil.

References

Aragão A, Avelar AT, Baseia B 2004. States of the quantized electromagnetic field with highly concentrated phase distribution. Physics Letters A 331(6):366–373. https://doi.org/10.1016/j.physleta. 2004.09.022.

Aragão A, Monteiro PB, Avelar AT, Baseia B 2005. Superposition of new phase states: Generation and properties. Physics Letters A 337(4–6):296–304. https://doi.org/10.1016/j.physleta.2005.02.013.

Baseia B 1995. Sobre a real necessidade de uma teoria quântica para a luz: ótica quântica. Revista Brasileira de Ensino de Física 17(1):1–10.

Born M, Heisenberg W, Jordan P 1926. Zur Quantenmechanik. II. Zeitschrift für Physik 35(8–9):557–615. https://doi.org/10.1007/BF01379806

Bredas JL, Adant C, Tackx P, Persoons A, Pierce BM 1994. Third-Order Nonlinear Optical Response in Organic Materials: Theoretical and Experimental Aspects. Chemical Reviews 94(1):243–278. https://doi.org/10.1021/cr00025a008.

Brune M, Haroche S, Raimond JM, Davidovich L, Zagury N 1992. Manipulation of photons in a cavity by dispersive atom-field coupling: Quantum-nondemolition measurements and generation of “Schrödinger cat” states. Physical Review A 45(7):5193-5217. https://doi.org/10.1103/PhysRevA. 45.5193.

Einstein A 1905. On a Heuristic Point of View about the Creatidn and Conversion of Light? translated from german by T Haar. Annalen der Physik 322(6):132–148. https://doi.org/10.1002/andp. 19053220607.

Einstein A 1907. Die Plancksche Theorie der Strahlung und die Theorie der spezifischen Wärme. Annalen der Physik 327(1):180–190. https://doi.org/10.1002/andp.19063270110.

Gerry CC, Knight PL 1997. Quantum superpositions and Schrödinger cat states in quantum optics. American Journal of Physics 65(10):964–974. https://doi.org/10.1119/1.18698.

Gerry CC, Knight PL 2004. Introductory Quantum Optics. Cambridge: Cambrige University Press.

Glauber RJ 1963. Coherent and incoherent states of the radiation field. Physical Review 131(6):2766-2788. https://doi.org/10.1103/PhysRev.131.2766.

Jaynes ET, Cummings FW 1963. Comparison of Quantum and Semiclassical Radiation Theories with Application to the Beam Maser. Proceedings of the IEEE 51(1):89–109. https://doi.org/10.1109/PROC. 1963.1664.

Kimble HJ, Dagenais M, Mandel L 1977. Photon antibunching in resonance fluorescence. Physical Review Letters 39(11):691–695. https://doi.org/10.1103/PhysRevLett.39.691.

Loudon R 2000. The quantum theory of light. 3rd ed. Oxford University Press, Oxford. 448pp.

Maia LPA, Baseia B 1999. Estados Não-Clássicos do Campo Luminoso. Revista Brasileira de Ensino de Física 21(4):476-489.

Maia LPA, Baseia B, Avelar AT, Malbouisson JMC 2004. Sculpturing coherent states to get highly excited Fock states for stationary and travelling fields. Journal of Optics B: Quantum and Semiclassical Optics 6(7):351–359. https://doi.org/10.1088/1464-4266/6/7/013.

Malbouisson JMC, Baseia B 1999. Higher-generation Schrödinger cat states in cavity QED. Journal of Modern Optics 46(14):2015-2041. https://doi.org/10.1080/09500349908231390.

Matthews DL, Hagelstein PL, Rosen MD, Eckart MJ, Ceglio NM, Hazi AU, Medecki H, MacGowan BJ, Trebes JE, Whitten BL, Campbell EM, Hatcher CW, Hawryluk AM, Kauffman RL, Pleasance LD, Rambach G, Scofield JH, Stone G, Weaver TA 1985. Demonstration of a Soft X-Ray Amplifier. Physical Review Letters 54(2):110–114. https://doi.org/10.1103/PhysRevLett.54.110.

Monroe C, Meekhof DM, King BE, Wineland DJ 1996. A “Schrödinger Cat” superposition state of an atom. Science 272(5265):1131–1136. https://10.1126/science.272.5265.1131.

Nussenzveig HM 1979. Complex Angular Momentum Theory of the Rainbow and the Glory. Journal of the Optical Society of America 69(8):1068-1079. https://doi.org/10.1364/JOSA.69.001068.

Nussenzveig HM 1998. Curso de Física Básica: ótica, Relatividade, Física Quântica. Vol. 4. Blucher, São Paulo, 437pp

Planck M 1900. On an Improvement of Wien’s Equation for the Spectrum. Verhandlungen der Deutschen Physikalischen Gesellschaft 2(202):1–3.

Rempe G, Schmidt-Kaler F, Walther H 1990. Observation of sub-Poissonian photon statistics in a micromaser. Physical Review Letters 64(23):2783-2787. https://doi.org/10.1103/PhysRevLett.64.2783.

Rempe G, Walther H, Klein N 1987. Observation of quantum collapse and revival in a one-atom maser. Physical Review Letters 58(4):353–356. https://doi.org/10.1103/PhysRevLett.58.353.

Roy B 1998. Nonclassical properties of the real and imaginary nonlinear Schrödinger cat states. Physics Letters A 249(1–2):25–29. https://doi.org/10.1016/S0375-9601(98)00642-2.

Schrödinger E 1926. Quantisierung als Eigenwertproblem. Annalen der Physik 384(6):489–527. https://doi.org/10.1002/andp.19263840602.

Slusher RE, Hollberg LW, Yurke B, Mertz JC, Valley JF 1986. Observation of squeezed states generated by four-wave mixing in an optical cavity. Physical Review Letters 55(22):2409–2414. https://doi.org/10.1103/PhysRevLett.55.2409.

Downloads

Published

2019-05-01

How to Cite

FERREIRA, Cristino Jose dos Santos; VAZ, Gabriela Rodrigues; VALVERDE, Clodoaldo; BASEIA, Basílio. Classical and Quantum Optics and Their Influences on Science and Society. Fronteiras - Journal of Social, Technological and Environmental Science, [S. l.], v. 8, n. 2, p. 104–131, 2019. DOI: 10.21664/2238-8869.2019v8i2.p104-131. Disponível em: https://periodicos.unievangelica.edu.br/index.php/fronteiras/article/view/3153. Acesso em: 23 nov. 2024.

Issue

Section

Dossier - Technologies, Innovation and Sustainability