Desenvolvimento de Modelos Computacionais para Avaliação Preditiva de Ecotoxicidade em Abelhas: Desafios Atuais

  • Josiel Araújo Lemes Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
  • José Elias Flosino Sousa Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
  • Kamila Siqueira Pereira Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
  • Bruno Francisco Cardoso Lacerda Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
  • Kamyla Cristina Barbosa Araújo Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
  • Josana de Castro Peixoto Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.; Universidade Estadual de Goiás, UEG, Brasil.
  • Lucimar Pinheiro Rosseto Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
  • Hamilton Barbosa Napolitano Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.; Universidade Estadual de Goiás, UEG, Brasil.
  • Bruno Junior Neves Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.; Universidade Federal de Goiás, UFG, Brasil.
Palavras-chave: Polinizadores, Toxicologia Computacional, Inteligência Artificial, Modelagem Preditiva

Resumo

Os produtos químicos perigosos, especialmente os agrotóxicos e produtos químicos industriais, vem sendo considerados responsáveis por uma queda dramática no número das abelhas. Consequentemente, a avaliação de risco ecológico de novos produtos químicos é vital e necessária. Uma vez que os ensaios experimentais em abelhas são caros, demorados e apresentam um problema ético, existe uma necessidade muito urgente de desenvolver métodos alternativos para avaliar a ecotoxicidade em abelhas. Na presente revisão, nós apresentamos os principais avanços tecnológicos utilizados para identificar e filtrar com segurança, compostos potencialmente tóxicos para abelhas. Em seguida, nós destacamos os principais esforços e armadilhas na integração, preparo e padronização de dados necessários para construção de modelos computacionais e sugerimos roteiros que possam contribuir para otimizar os resultados da pesquisa e conduzir a construção de modelos computacionais mais eficientes e preditivos.

Biografia do Autor

Josiel Araújo Lemes, Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Mestrado em andamento em Ciências Ambientais pelo Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
José Elias Flosino Sousa, Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Mestrado em Ciências Moleculares pela Universidade Estadual de Goiás, UEG, Brasil. Docente no Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Kamila Siqueira Pereira, Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Graduação em andamento em Agronomia pelo Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Bruno Francisco Cardoso Lacerda, Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Mestrado em andamento em Ciências Ambientais pelo Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Kamyla Cristina Barbosa Araújo, Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Graduação em andamento em Ciências Biológicas pelo Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Josana de Castro Peixoto, Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.; Universidade Estadual de Goiás, UEG, Brasil.
Doutorado em Ciências Biológicas pela Universidade Federal de Goiás, UFG, Brasil. Docente no Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.; e na Universidade Estadual de Goiás, UEG, Brasil.
Lucimar Pinheiro Rosseto, Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Doutorado em Ciências pela Universidade Estadual de Campinas, UNICAMP, Brasil. Docente no Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.
Hamilton Barbosa Napolitano, Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.; Universidade Estadual de Goiás, UEG, Brasil.
Doutorado em Física Biomolecular pela Universidade de São Paulo, USP, Brasil. Docente no Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.; e na Universidade Estadual de Goiás, UEG, Brasil.
Bruno Junior Neves, Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.; Universidade Federal de Goiás, UFG, Brasil.
Doutorado em Medicina Tropical pela Universidade Federal de Goiás, UFG, Brasil. Docente no Centro Universitário de Anápolis, UniEVANGÉLICA, Brasil.; e na Universidade Federal de Goiás, UFG, Brasil.

Referências

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, et al. 2016. TensorFlow: A System for Large-Scale Machine Learning TensorFlow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’16), 265-284. doi:10.1038/nn.3331.

Alaux C, Brunet JL, Dussaubat C, Mondet F, Tchamitchan S, Cousin M, Brillard J, Baldy A, Belzunces LP, Le Conte Y 2010. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environmental Microbiology, 12(3):774-782. doi:10.1111/j.1462-2920.2009.02123.x.

Alves VM, Braga RC, Silva MB, Muratov E, Fourches D, Tropsha A, Andrade CH 2014. Pred-hERG: A novel web-accessible computational tool for predicting cardiac toxicity of drug candidates. In Abstracts of Papers, 248th ACS National Meeting & Exposition, San Francisco, CA, United States, August 10-14, 2014, CINF-40. American Chemical Society.

Atkins EL, Kellum D 1986. Comparative Morphogenic and toxicity Studies on the Effect of Pesticides on Honeybee Brood. Journal of Apicultural Research, 25(4):242-255. doi:10.1080/00218839.1986.11100725.

Blacquière T, Smagghe G, van Gestel CAM, Mommaerts V 2012. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology, 21(4):973-992. doi:10.1007/s10646-012-0863-x.

Braga RC, Alves VM, Muratov EN, Strickland J, Kleinstreuer N, Trospsha A, Andrade CH 2017. Pred-Skin: A Fast and Reliable Web Application to Assess Skin Sensitization Effect of Chemicals. Journal of Chemical Information and Modeling, 57(5):1013-1017. doi:10.1021/acs.jcim.7b00194.

Breiman L 2001. Random forests. Machine Learning, 45(1):5-32. doi:10.1023/A:1010933404324.

Buckle DR, Erhardt PW, Ganellin CR, Kobayashi T, Perun TJ, Proudfoot J, Senn-Bilfinger J 2013. Glossary of Terms Used in Medicinal Chemistry Part II. In Annual Reports in Medicinal Chemistry, 48:387-418. doi:10.1016/B978-0-12-417150-3.00024-7.

Cajá DF, Silva RA, Santos AS, Souza FS, Silva SS, Silva VLS, Andrade ABA 2015. Frequência de visitas de abelhas africanizadas Apis melífera L) em flores de chanana (Turnera ulmifolia L.). ACSA - Agropecuária Científica no Semiárido, 11(1):164-169.

Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL 2011. Patterns of widespread decline in North American bumble bees. Proceedings of the National Academy of Sciences, 108(2):662-667. doi:10.1073/pnas.1014743108.

Cardoso FH, Moraes MVP, Serra J, Sarney Filho J 2002. Decreto no 4.074. Brasil.

Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, Dearden J, et al. 2014. QSAR modeling: where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12):4977-5010. doi:10.1021/jm4004285.

Como F, Carnesecchi E, Volani S, Dorne JL, Richardson J, Bassan A, Pavan M, Benfenati E 2017. Predicting acute contact toxicity of pesticides in honeybees ( Apis mellifera ) through a k-nearest neighbor model. Chemosphere, 166(janeiro):438-444. doi:10.1016/j.chemosphere.2016.09.092.

Dearden JC, Cronin MTD, Kaiser KLE 2009. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR and QSAR in Environmental Research, 20(3-4):241-266. doi:10.1080/10629360902949567.

Desneux N, Decourtye A, Delpuech JM 2007. The Sublethal Effects of Pesticides on Beneficial Arthropods. Annual Review of Entomology, 52(1):81-106. doi:10.1146/annurev.ento.52.110405.091440.

Devillers J, Pham-Delègue MH, Decourtye A, Budzinski H, Cluzeau S, Maurin G 2002. Structure-toxicity modeling of pesticides to honey bees. SAR and QSAR in Environmental Research, 13(7-8):641-648. doi:10.1080/1062936021000043391.

Eiri DM, Nieh JC 2016. A nicotinic acetylcholine receptor agonist affects honey bee sucrose responsiveness and decreases waggle dancing. The Journal of Experimental Biology, 219(13):2081-2081. doi:10.1242/jeb.143727.

Fairbrother A, Purdy J, Anderson T, Fell R 2014. Risks of neonicotinoid insecticides to honeybees. Environmental Toxicology and Chemistry, 33(4):719-731. doi:10.1002/etc.2527.

Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, et al. 2012. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Research, 40(Database issue):D1100-D1107. doi:10.1093/nar/gkr777.

Goh GB, Hodas NO, Vishnu A 2017. Deep learning for computational chemistry. Journal of Computational Chemistry, 38(16):1291-1307. doi:10.1002/jcc.24764.

Golbraikh A, Tropsha A 2002. Beware of q2! Journal of molecular graphics & modelling, 20(4):269-276.

Gregorc A, Evans JD, Scharf M, Ellis JD 2012. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor). Journal of Insect Physiology, 58(8):1042-1049. doi:10.1016/j.jinsphys.2012.03.015.

Hunter JD 2007. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering, 9(3):90-95. doi:10.1109/MCSE.2007.55.

Johansen CA, Mayer DF 2013. Pollinator Protection: A Bee & Pesticide Handbook. JC Lawrence (org.). Wicwas Press, Cheshire, CT.

Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T 2007. Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274(1608):303-313. doi:10.1098/rspb.2006.3721.

Kockar H, Alper M, Sahin T, Haciismailoglu MS 2010. Co-Fe films: effect of Fe content on their properties. Journal of nanoscience and nanotechnology, 10(11): 7639-7642. doi:10.1007/978-1-4020-9783-6.

Korotcov A, Tkachenko V, Russo DP, Ekins S 2017. Comparison of Deep Learning With Multiple Machine Learning Methods and Metrics Using Diverse Drug Discovery Data Sets. Molecular Pharmaceutics, 14(12):4462-4475. doi:10.1021/acs.molpharmaceut.7b00578.

Landrum 2014. RDKit: Open-Source Cheminformatics Software.

Li X, Zhang Y, Chen H, Li H, Zhao Y 2017. Insights into the Molecular Basis of the Acute Contact Toxicity of Diverse Organic Chemicals in the Honey Bee. Journal of Chemical Information and Modeling, 57(12):2948-2957. doi:10.1021/acs.jcim.7b00476.

Li X, Bao C, Yang D, Zheng M, Li X, Tao S 2010. Toxicities of fipronil enantiomers to the honeybee Apis mellifera L. and enantiomeric compositions of fipronil in honey plant flowers. Environmental Toxicology and Chemistry, 29(1):127-132. doi:10.1002/etc.17.

Ma J, Sheridan RP, Liaw A, Dahl GE, Svetnik V 2015. Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships. Journal of Chemical Information and Modeling, 55(2):263-274. doi:10.1021/ci500747n.

Martins ES 1996. Portaria Normativa Ibama no 84. Ibama, Brasil.

McKinney W 2010. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, 1697900:51-56.

Millman KJ, Aivazis M 2011. Python for Scientists and Engineers. Computing in Science & Engineering, 13(2):9-12. doi:10.1109/MCSE.2011.36.

Ministério do Meio Ambiente. 2017. Manual de avaliação de risco ambiental de agrotóxicos para abelhas.

Morgan HL 1965. The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. Journal of Chemical Documentation, 5(2):107-113. doi:10.1021/c160017a018.

OECD 1998. Test No. 214: Honeybees, Acute Contact Toxicity Test. doi:10.1787/9789264070189-en.

OECD 2004. OECD principles for the validation, for regulatory purposes, of (Quantitative) Structure-Activity Relationship models.

Oliphant TE 2007. Python for Scientific Computing. Computing in Science & Engineering, 9(3):10-20. doi:10.1109/MCSE.2007.58.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, et al. 2012. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research, 12:2825-2830. doi:10.1007/s13398-014-0173-7.2.

Pettis JS, Lichtenberg EM, Andree M, Stitzinger J, Rose R, VanEngelsdorp D 2013. Crop Pollination Exposes Honey Bees to Pesticides Which Alters Their Susceptibility to the Gut Pathogen Nosema ceranae. Nascimento FS (org.). PLoS ONE, 8(7):e70182. doi:10.1371/journal.pone.0070182.

Pettis JS, VanEngelsdorp D, Johnson J, Dively G 2012. Pesticide exposure in honey bees results in increased levels of the gut pathogen Nosema. Naturwissenschaften, 99(2):153-158. doi:10.1007/s00114-011-0881-1.

Pires CSS, Pereira FM, Lopes MTR, Nocelli RCF, Malaspina O, Pettis JS, Teixeira EW 2016. Enfraquecimento e perda de colônias de abelhas no Brasil: há casos de CCD? Pesquisa Agropecuária Brasileira, 51(5):422-442. doi:10.1590/S0100-204X2016000500003.

Riniker S, Landrum GA 2013. Similarity maps - A visualization strategy for molecular fingerprints and machine-learning methods. Journal of Cheminformatics, 5(9):1-7. doi:10.1186/1758-2946-5-43.

Rogers D, Hahn M 2010. Extended-connectivity fingerprints. Journal of Chemical Information and Modeling, 50(5):742-754. doi:10.1021/ci100050t.

Sarney J, Machado IR, Alves Filho J, Denys RB 1989. Lei no 7.802. Brasil.

Singh KP, Gupta S, Basant N, Mohan D 2014. QSTR Modeling for Qualitative and Quantitative Toxicity Predictions of Diverse Chemical Pesticides in Honey Bee for Regulatory Purposes. Chemical Research in Toxicology, 27(9):1504-1515. doi:10.1021/tx500100m.

Thompson HM, Fryday SL, Harkin S, Milner S 2014. Potential impacts of synergism in honeybees (Apis mellifera) of exposure to neonicotinoids and sprayed fungicides in crops. Apidologie, 45(5):545-553. doi:10.1007/s13592-014-0273-6.

Todeschini R, Consonni V 2000. Handbook of Molecular Descriptors. R Todeschini, V Consonni (orgs.). Methods and Principles in Medicinal Chemistry. Wiley-VCH Verlag GmbH, Weinheim, Germany, Germany. doi:10.1002/9783527613106.

Todeschini R, Consonni V 2009. Molecular Descriptors for Chemoinformatics. Wiley-VCH Verlag GmbH, Weinheim, Germany.

Tropsha A 2010. Best Practices for QSAR Model Development, Validation, and Exploitation. Molecular Informatics, 29(6-7):476-488. doi:10.1002/minf.201000061.

Tylianakis JM 2013. The Global Plight of Pollinators. Science, 339(6127):1532-1533. doi:10.1126/science.1235464.

U.S. Environmental Protection Agency 1993. Pesticide Ecotoxicity Database (Formerly: Environmental Effects Database (EEDB)).

van der Walt S, Colbert SC, Varoquaux G 2011. The NumPy Array: A Structure for Efficient Numerical Computation. Computing in Science & Engineering, 13(2):22-30. doi:10.1109/MCSE.2011.37.

van der Zee R, Pisa L, Andonov S, Brodschneider R, Charrière JD, Chlebo R, Coffey MF, et al. 2012. Managed honey bee colony losses in Canada, China, Europe, Israel and Turkey, for the winters of 2008-9 and 2009-10. Journal of Apicultural Research, 51(1):100-114. doi:10.3896/IBRA.1.51.1.12.

vanEngelsdorp D, Meixner MD 2010. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. Journal of Invertebrate Pathology, 103(janeiro):S80-S95. doi:10.1016/j.jip.2009.06.011.

vanEngelsdorp D, Speybroeck N, Evans JD, Nguyen BK, Mullin C, Frazier M, Frazier J, et al. 2010. Weighing Risk Factors Associated With Bee Colony Collapse Disorder by Classification and Regression Tree Analysis. Journal of Economic Entomology, 103(5):1517-1523. doi:10.1603/EC09429.

Vapnik VV 2000. The Nature of Statistical Learning Theory. 2.ed. New York: Springer.

Vieira GHC, Marchini LC, Souza BA, Moreti ACCC 2008. Fontes florais usadas por abelhas (Hymenoptera, Apoidea) em área de cerrado no município de Cassilândia, Mato Grosso do Sul, Brasil. Ciencia e Agrotecnologia, 32(5):1454-1460. doi:10.1590/S1413-70542008000500015.

Vighi M, Garlanda MM, Calamari D 1991. QSARs for toxicity of organophosphorous pesticides to Daphnia and honeybees. Science of The Total Environment, 109-110(dezembro):605-622. doi:10.1016/0048-9697(91)90213-X.

Whitehorn PR, O’Connor S, Wackers FL, Goulson D 2012. Neonicotinoid Pesticide Reduces Bumble Bee Colony Growth and Queen Production. Science, 336(6079):351-352. doi:10.1126/science.1215025.

Wu JY, Anelli CM, Sheppard WS 2011. Sub-Lethal Effects of Pesticide Residues in Brood Comb on Worker Honey Bee (Apis mellifera) Development and Longevity. F Marion-Poll (org.). PLoS ONE, 6(2):e14720. doi:10.1371/journal.pone.0014720.

Wu JY, Smart MD, Anelli CM, Sheppard WS 2012. Honey bees (Apis mellifera) reared in brood combs containing high levels of pesticide residues exhibit increased susceptibility to Nosema (Microsporidia) infection. Journal of Invertebrate Pathology, 109(3):326-329. doi:10.1016/j.jip.2012.01.005.

Xue L, Bajorath J 2000. Molecular descriptors in chemoinformatics, computational combinatorial chemistry, and virtual screening. Combinatorial Chemistry & High Throughput Screening, 3(5):363-372.

Yap CW 2011. PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7):1466-1474. doi:10.1002/jcc.21707.
Publicado
2019-05-01
Como Citar
Lemes, Josiel Araújo, José Elias Flosino Sousa, Kamila Siqueira Pereira, Bruno Francisco Cardoso Lacerda, Kamyla Cristina Barbosa Araújo, Josana de Castro Peixoto, Lucimar Pinheiro Rosseto, Hamilton Barbosa Napolitano, e Bruno Junior Neves. 2019. Desenvolvimento De Modelos Computacionais Para Avaliação Preditiva De Ecotoxicidade Em Abelhas: Desafios Atuais. Fronteiras: Journal of Social, Technological and Environmental Science 8 (2), 132-46. https://doi.org/https://doi.org/10.21664/2238-8869.2019v8i2.p132-146.
Seção
Dossiê - Tecnologias, Inovação e Sustentabilidade