Performance da CO-oximetria de pulso para identificação do tabagismo na Atenção Básica
DOI:
https://doi.org/10.29237/2358-9868.2018v6i1.p45-55Palavras-chave:
Hábito de fumar. Carboxihemoglobina. Atenção Primária à Saúde.Resumo
Resumo
Objetivo: Avaliar o desempenho de um CO-oxímetro para determinação do status do tabagismo em relação a um medidor de monóxido de carbono exalado em indivíduos atendidos na atenção básica.
Métodos: Estudo transversal realizado em pacientes ambulatoriais atendidos nas unidades básicas de saúde de Anápolis-GO, submetidos à avaliação clínica, dosagem do monóxido de carbono exalado e medida do monóxido de carbono por CO-oximetria de pulso.
Resultados: Foram incluídos 449 indivíduos, 106 tabagistas (23,6%), 89 ex-tabagistas (19,8%), 203 nunca fumantes (45,2%) e 51 fumantes passivos (11,4%). A CO-oximetria com ponto de corte de ≥4% mostrou uma especificidade de 77,3% (IC95% 72,5%-81,6%), uma sensibilidade de 52,8% (IC95% 42,9%-62,6%), valores preditivos positivo e negativo de 45,3% (IC95% 38,9%-51,9%), 82,1% (IC95% 78,8%-85%), respectivamente e a área sob a curva ROC de 0,73 (IC95% 0,67-0,78). A dosagem do monóxido de carbono exalado com ponto de corte de ≥5ppm mostrou uma especificidade de 96,2% (IC95% 93,6%-98%), sensibilidade de 79,2% (IC95% 70,3%-86,5%), valor preditivo positivo e negativo de 88,2% (IC95% 81,3%-92,8%), 92,9% (IC95% 89,9%-95%), respectivamente e a área sob a curva ROC de 0,91 (IC95% 0,87-0,95). COHb(%)≥4 demostrou OR:4,3; (IC 95% 2,7-7,1); p<0,0001.
Conclusão: A CO-oximetria apresentou capacidade de identificação do tabagismo inferior à da dosagem do monóxido de carbono exalado, entretanto, quando COHb(%)≥4 há alta probabilidade de tabagismo.
Referências
2. Vartiainen E, Seppälä T, Lillsunde P, Puska P. Validation of self reported smoking by serum cotinine measurement in a community-based study. J Epidemiol Community Health. 2002 Mar;56(3):167-70. https://doi.org/10.1136/jech.56.3.167.
3. Stelmach R, Fernandes FLA, Carvalho-Pinto RM, Athanazio RA, Rached SZ, Prado GF, et al. Comparação entre medidas objetivas do tabagismo e tabagismo autodeclarado em pacientes com asma ou DPOC: será que nossos pacientes dizem a verdade?. J Bras Pneumol. 2015;41(2):124-132. https://doi.org/10.1590/S1806-37132015000004526.
4. Santos UP, Gannam S, Abe JM, Esteves PB, Filho MF, Wakassa TB, et al. Emprego da determinação de monóxido de carbono no ar exalado para a detecção do consumo de tabaco. J Bras Pneumol. 2001;27(5):231-236. https://doi.org/10.1590/s0102-35862001000500001.
5. Zielińska-Danch W, Wardas W, Sobczak A, Szołtysek-Bołdys I. Estimation of urinary cotinine cut-off points distinguishing non-smokers, passive and active smokers. Biomarkers. 2007 Sep-Oct;12(5):484-96. https://doi.org/10.1080/13547500701421341.
6. Rebagliato M. Validation of self reported smoking. J Epidemiol Community Health. 2002 Mar;56(3):163-4. https://doi.org/10.1136/jech.56.3.163.
7. Chatkin G, Chatkin JM, Aued G, Petersen GO, Jeremias T, Thiesen FV. Avaliação da concentração de monóxido de carbono no ar exalado em tabagistas com DPOC. J Bras Pneumol. 2010;36(3): 332-8. https://doi.org/10.1590/S1806-37132010000300011.
8. SRNT Subcommittee on Biochemical Verification. Biochemical verification of tobacco use and cessation. Nicotine Tob Res. 2002 May;4(2):149-59. https://doi.org/10.1080/14622200210123581.
9. Hampson NB. Noninvasive pulse CO-oximetry expedites evaluation and management of patients with carbon monoxide poisoning. Am J Emerg Med. 2012;30(9):2021-4. doi: 10.1016/j.ajem.2012.03.026.
10. Togores B, Bosch M, Agustí AG. The measurement of exhaled carbon monoxide is influenced by airflow obstruction. Eur Respir J. 2000;15(1):177-80. https://doi.org/10.1183/09031936.00.15117700
11. Bedfont Scientifıc Ltd. Smokerlyzer® piCO+ operating manual. Kent, UK: Bedfont Scientific Ltd, 2007.
12. Hampson NB, Scott KL. Use of a noninvasive pulse CO-oximeter to measure blood carboxyhemoglobin levels in bingo players. Respir Care. 2006;51(7):758-60.
13. Coulange M, Barthelemy A, Hug F, Thierry AL, De Haro L. Reliability of new pulse CO-oximeter in victims of carbon monoxide poisoning. Undersea and Hyperbaric Medicine. 2008;35:107–11.
14. Touger M, Birnbaum A, Wang J, Chou K, Pearson D, Bijur P. Performance of the RAD-57 pulse CO-oximeter compared with standard laboratory carboxyhemoglobin measurement. Annals of Emergency Medicine. 2010;56:382–8. https://doi.org/10.1016/j.annemergmed.2010.03.041
15. Piatkowski A, Ulrich D, Grieb G, Pallua N. A new tool for the early diagnosis of carbon monoxide intoxication. Inhalation Toxicology 2009; 21:1144–7. https://doi.org/10.3109/08958370902839754
16. Roth D, Herkner H, Schreiber, W, Hubmann N, Gamper G, Laggner AN, Havel C. Accuracy of noninvasive multiwave pulse oximetry compared with carboxyhemoglobin from blood gas analysis in unselected emergency department patients. Annals of Emergency Medicine. 2011;58: 74–9. https://doi.org/10.1016/j.annemergmed.2010.12.024
17. Suner S, Partridge R, Sucov A, Valente J, Chee K, Hughes A, Jay G. Non- invasive pulse CO-oximetry screening in the emergency department identifies occult carbon monoxide toxicity. Journal of Emergency Medicine. 2008;34: 441–50. ttps://doi.org/10.1016/j.jemermed.2007.12.004
18 Sebbane M, Claret PG, Mercier G, Lefebvre S, Théry R, Dumont R, Maillé M, Richard JP, Eledjam JJ, de La Coussaye JE. Emergency department management of suspected carbon monoxide poisoning: role of pulse CO-oximetry. Respir Care. 2013 Oct;58(10):1614-20. doi: 10.4187/respcare.02313.
19. Zaouter C, Zavorsky GS. The measurement of carboxyhemoglobin and methemoglobin using a non-invasive pulse CO-oximeter. Respir Physiol Neurobiol. 2012 Jul 1;182(2-3):88-92. doi: 10.1016/j.resp.2012.05.010.
20. Bastos RR, Bastos RR. Sensibilidade e Especificidade. HU Revista. 2004; 30(1):48-51
21. Maisel WH, Lewis RJ. Noninvasive measurement of carboxyhemoglobin: how accurate is accurate enough? Ann Emerg Med. 2010;56(4):389-91. doi: 10.1016/j.annemergmed.2010.05.025
22. Cardwell K, Pan Z, Boucher R, Zuk J, Friesen RH. Screening by pulse CO-oximetry for environmental tobacco smoke exposure in preanesthetic children. Paediatr Anaesth. 2012 Sep;22(9):859-64. doi: 10.1111/j.1460-9592.2012.03867.x.
23 Wright J. Chronic and occult carbon monoxide poisoning: we don't know what we're missing. Emerg Med J. 2002 Sep;19(5):386-90 https://doi.org/10.1136/emj.19.5.386.
24. Levy RJ. Carbon monoxide pollution and neurodevelopment: A public health concern. Neurotoxicol Teratol. 2015;49:31-40. doi: 10.1016/j.ntt.2015.03.001.
25 Rangan S, Uplekar M. Gender perspectives of access to health and tuberculosis care. In: Diwan VK, Thorson A, Winkvist A, (editors). Gender and tuberculosis: an international research workshop. Report from the workshop at the Nordic School of Public Health: Göteborg; 1998;24-26:107-125.
26 Faleiro JC, Giatti L, Barreto SM, Camelo LD, Griep RH, Guimarães JM, Fonseca MJ, Chor D, Chagas MD. [Lifetime socioeconomic status and health-related risk behaviors: the ELSA-Brazil study]. Cad Saude Publica. 2017 Apr 3;33(3):e00017916. doi: 10.1590/0102-311X00017916.
27. Rebagliato M. Validation of self reported smoking. J Epidemiol Community Health. 2002 Mar;56(3):163-4. https://doi.org/10.1136/jech.56.3.163.