Ambientes de Vida Assistida no acompanhamento de Idosos

  • Siony da Silva IFSP
Palavras-chave: Idoso. Ambiente de Acompanhamento de Idoso. Casa Inteligente.

Resumo

Objetivo: Identificar a relação entre casas inteligentes e o emprego dos recursos tecnológicos em Ambientes de Vida Assistida. Metodologia: Revisão bibliográfica de artigos publicados na base de dados Pubmed entre 2014 e 2019. Resultados: A análise dos artigos identificou que embora existam vários benefícios no uso de sensores, internet das coisas e aprendizado de máquina no acompanhamento das atividades diárias de idosos, elementos empregados em ambientes de casas inteligentes,  os estudos  estão sendo feitos em caráter experimental, motivado por diversos fatores entre eles problemas de interoperabilidade dos recursos tecnológicos, custo de implantação, necessidade de equipe multidisciplinar na elaboração do projeto, aceitação do sistema pelo usuário, necessidade de literacia digital do usuário, segurança dos dados, emprego de recursos tecnológicos não invasivos, flexibilidade do sistema e participação do idoso e cuidador na elaboração de uma proposta de casa inteligente no uso de tecnologias. Conclusão: Por ser o envelhecimento um processo individual e progressivo, tais sistemas precisam ter facilidade para que novos recursos possam ser incorporados ao longo do tempo, havendo a formação de equipe multidisciplinar na elaboração do sistema, e que o idoso possa participar dessa implantação.

Referências

1.Shahrestani S. Internet of Things and Smart Environments Assistive Technologies for Disability, Dementia, and Aging, 2017. Arquivo Shahrestani
2. Dasios A, Gavalas D, Pantziou G, Konstantopoulos C. Hands-On Experiences in Deploying Cost-Effective Ambient-Assisted Living Systems. Sensors (Basel). 2015;15(6):14487–14512. Published 2015 Jun 18. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4507647/
3. Skouby EK, Kivimäki A, Haukipuro L, Lynggaard P, Windekilde I. Smart Cities and the Ageing Population. Proceedings of the 32nd Meeting of WWRF, Marrakech, Morocco, 20–22 May 2014. Disponível em: https://pdfs.semanticscholar.org/d7a5/84f867996dbdf78a34697523c537dae218bc.pdf. Ver com calma
4. Haux R, Koch S, Lovell N, Marschollek M, Nakashima N, Wolf K. Health-Enabling and Ambient Assistive Technologies: Past, Present, Future, IMIA Yearbook of Medical Informatics, 2016 Disponível em: https://www.researchgate.net/publication/304661754_Health-Enabling_and_Ambient_Assistive_Technologies_Past_Present_Future
5. Memon M, Wagner SR, Pedersen CF, Beevi FHA, Hansen FO. Ambient Assisted Living Healthcare Frameworks, Platforms, Standards, and Quality Attributes. Sensors 2014, 14(3), 4312-4341. Disponível em: https://www.mdpi.com/1424-8220/14/3/4312/htm
6. Eisa S, Moreira A. A Behaviour Monitoring System (BMS) for Ambient Assisted Living. Sensors (Basel). 2017;17(9):1946. Published 2017 Aug 24. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5620736/
7. Ujager FS, Mahmood A. A Context-Aware Accurate Wellness Determination (CAAWD) Model for Elderly People Using Lazy Associative Classification. Sensors (Basel). 2019;19(7):1613. Published 2019 Apr 3. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6480197/
8. Ngankam HK, Pigot H, Parenterau M, Lussier M, Aboujaoudé A, Laliberté C et al. An IoT Architecture of Microservices for Ambient Assisted Living Environments to Promote Aging in Smart Cities. In: Pagán J., Mokhtari M., Aloulou H., Abdulrazak B., Cabrera M. (eds) How AI Impacts Urban Living and Public Health. ICOST 2019. Lecture Notes in Computer Science, vol 11862. Springer, Cham. Disponível em: https://link.springer.com/chapter/10.1007/978-3-030-32785-9_14
9. Frontoni E, Pollini R, Russo P, Zingaretti P, Cerri G. HDOMO: Smart Sensor Integration for an Active and Independent Longevity of the Elderly. Sensors (Basel). 2017;17(11):2610. Published 2017 Nov 13. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5713030/
10. Chung J, Demiris G, Thompson H J. Ethical Considerations Regarding the Use of Smart Home Technologies for Older Adults Annual Review of Nursing Research 2016 Disponível em: https://connect.springerpub.com/content/sgrarnr/34/1/155

11. Freddi A, Longhi S, Monteriù A. Special Issue on "Smart Homes": Editors' Notes. Sensors (Basel). 2019;19(4):836. Published 2019 Feb 18. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412805/

12. Monteriù A, Prist MR, Frontoni E, et al. A Smart Sensing Architecture for Domestic Monitoring: Methodological Approach and Experimental Validation. Sensors (Basel). 2018;18(7):2310. Published 2018 Jul 17. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6068825/
13. Susnea I, Dumitriu L, Talmaciu M, Pecheanu E, Munteanu D. Unobtrusive Monitoring the Daily Activity Routine of Elderly People Living Alone, with Low-Cost Binary Sensors. Sensors (Basel). 2019;19(10):2264. Published 2019 May 16. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6567306/
14. Wang S, Bolling K, Mao W, Reichstadt J, Jeste D, Kim H et al. Technology to Support Aging in Place: Older Adults' Perspectives. Healthcare (Basel). 2019;7(2):60. Published 2019 Apr 10. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6627975/
15. Diraco G, Leone A, Siciliano P. A Radar-Based Smart Sensor for Unobtrusive Elderly Monitoring in Ambient Assisted Living Applications. Biosensors (Basel). 2017;7(4):55. Published 2017 Nov 24. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5746778/#B19-biosensors-07-00055

16. Mortenson WB, Sixsmith A, Beringer R. No Place Like Home? Surveillance and What Home Means in Old Age. Can J Aging. 2016;35(1):103–114. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/26742899

17. Nef T, Urwyler P, Büchler M, et al. Evaluation of Three State-of-the-Art Classifiers for Recognition of Activities of Daily Living from Smart Home Ambient Data. Sensors (Basel). 2015;15(5):11725–11740. Published 2015 May 21. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481906/

18. Belmonte-Fernández Ó, Puertas-Cabedo A, Torres-Sospedra J, Montoliu-Colás R, Trilles-Oliver S. An Indoor Positioning System Based on Wearables for Ambient-Assisted Living. Sensors (Basel). 2016;17(1):36. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5298609/

19. Borelli E, Paolini G, Antoniazzi F, Barbiroli M, Benassi F, Chesani F et al. HABITAT: An IoT Solution for Independent Elderly. Sensors 2019, 19(5), 1258. Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/30871107
20. ElHady NE, Provost J. A Systematic Survey on Sensor Failure Detection and Fault-Tolerance in Ambient Assisted Living. Sensors (Basel). 2018;18(7):1991. Published 2018 Jun 21. Disponível em: https://www.mdpi.com/1424-8220/18/7/1991/htm
21. Ghayvat H, Awais M, Pandya S, et al. Smart Aging System: Uncovering the Hidden Wellness Parameter for Well-Being Monitoring and Anomaly Detection. Sensors (Basel). 2019;19(4):766. Published 2019 Feb 13. Disponível em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6412512/Anomaly
22. Peek ST, Wouters EJ, Luijkx KG, Vrijhoef HJ. What it Takes to Successfully Implement Technology for Aging in Place: Focus Groups With Stakeholders. J Med Internet Res. 2016;18(5):e98. Published 2016 May 3. Disponivel em: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4904824/
Publicado
2020-07-13
Seção
ARTIGOS DE REVISÃO