Efeitos da eletroestimulação neuromuscular sobreposta ao treinamento de força sobre os níveis de lactato sanguíneo

  • Weverton Guedes Brandão
  • Rafael Barbosa Lisboa
  • Edilberto dos Santos Barros
  • Iransé Oliveira-Silva UniEVANGÉLICA https://orcid.org/0000-0003-2692-1548
  • Leonardo Costa Pereira Centro Universitário Euro Americano
Palavras-chave: Eletroestimulação neuromuscular. Treino de força. Intensidade de Treinamento.

Resumo

Introdução: A Eletroestimulação Neuromuscular é uma técnica de contração involuntária da musculatura esquelética. Uma vez sobreposta a contração voluntária no treinamento de força, poderá potencializar os efeitos fisiológicos decorrente do treinamento, portanto, essas adaptações ainda não estão totalmente elucidadas na literatura.Objetivo:  O objetivo do estudo foi verificar a influência da eletroestimulação neuromuscular concomitante ao treinamento de força sobre os níveis de lactato sanguíneo. Métodos: Participaram do estudo 20 indivíduos do sexo masculino com idade entre 20 e 30 anos. Todos os indivíduos participaram dos 3 protocolos de treinamento de forma aleatória, sendo: cadeira extensora (CE), eletroestimulação (EE) e cadeira extensora com eletroestimulação sobreposta (CE+EE). O lactato foi dosado via sangue venoso e analisado com técnica de espectrofotometria. Os dados estatísticos foram obtidos com auxílio do SPSS 19.0. Resultados: Todos os protocolos de treinamento induziram aumento significativo nos níveis de lactato sanguíneo quando comparado ao repouso (p≤0,05), porém quando feito a comparação entre métodos, o protocolo CE+EE (5,9mmol/L) comparado ao CE (5,6mmol/L) não apresentou diferença estatística significativa (p= 0,433). Conclusão: A eletroestimulação induz aumento nos níveis de lactato, porém quando combinada aos protocolos de treinamento de força, esse aumento não ocorre de forma significativa.

Referências

1. Fleck SJ, Kraemer WJ. Fundamentos do teinamento de força muscular. 3ª Ed. Porto Alegre: Artmed , 2017. cap. 1 p. 1-14.1. Fleck SJ KW. Fundamentos do treinamento de força muscular. Vol. 3. 2017. 1–14 p.
2. ACSM. Progression models in resistance training for healthy adults. Med Sci Sports Exerc [Internet]. 2009;41(3):687–708.
3. Blagrove RC, Howatson G, Hayes PR. Effects of Strength Training on the Physiological Determinants of Middle- and Long-Distance Running Performance: A Systematic Review. Sport Med [Internet]. 2018;48(5):1117–49.
4. Thomas R. Baechle RWE. Fundamentos do treinamento de força e do condicionamento. Manole, editor. 2010. 364–366
5. Marston KJ, Peiffer JJ, Newton MJ, Scott BR. A comparison of traditional and novel metrics to quantify resistance training. Sci Rep [Internet]. 2017;7(1):1–8.
6. Pinto RS, Lupi R, Brentano MA. Respostas metabólicas ao treinamento de força: Uma ênfase no dispêndio energético. Rev Bras Cineantropometria e Desempenho Hum. 2011;13(2):150–7.
7. Brooks GA. The Science and Translation of Lactate Shuttle Theory. Cell Metab [Internet]. 2018;27(4):757–85. Available from: https://doi.org/10.1016/j.cmet.2018.03.008
8. McArdle WD, Katch FI, Katch VL. Fisiologia do Exercício - Nutrição, Energia e Desempenho Humano (CITAÇÃO LIVRO). World. 2016. 1132 p.
9. Veldman MP, Gondin J, Place N, Maffiuletti NA. Effects of neuromuscular electrical stimulation training on endurance performance. Front Physiol. 2016;7(NOV):1–5.
10. Maffiuletti NA. Physiological and methodological considerations for the use of neuromuscular electrical stimulation. Eur J Appl Physiol. 2010;110(2):223–34.
11. Pichon F, Chatard JC, Martin A, Cometti G. Electrical stimulation and swimming performance. Vol. 27, Medicine and Science in Sports and Exercise. 1995. p. 1671–6.
12. Emmler WOK, Tengel SIVONS, Chwarz JOS, Ayhew JELM. Effect of WB-EMS on energy expenditure during exercise. 2012;240–5.
13. Sinacore DR, Delitto A, King DS, Rose SJ. Type II fiber activation with electrical stimulation: A preliminary report. Phys Ther. 1990;70(7):416–22.
14. Watanabe K, Yoshida T, Ishikawa T, Kawade S, Moritani T. Effect of the combination of whole-body neuromuscular electrical stimulation and voluntary exercise on metabolic Responses in human. Front Physiol. 2019;10(MAR):1–8.
15. Enoka RM. Muscle Strength and Its Development: New Perspectives. Sport Med An Int J Appl Med Sci Sport Exerc. 1988;6(3):146–68.
16. Matsudo S; Araújo T; Marsudo V; Andrade D; Andrade E; Oliveira LC; Braggion G. Questionario Internacional de Atividade Física(i paq): Estudo de Validade e Reprodutibilidade no Brasil. Rev bras ativ fís saúde; 2001;6.
17. Both DR, Matheus SC, Behenck MS. Acuracidade de diferentes tipos de impedância bioelétrica na estimativa da gordura corporal de homens. Nutr Clin y Diet Hosp. 2015;35(2):8–15.
18. Shimojo N, Naka K, Nakajima C, Yoshikawa C, Okuda K, Okada K. Test-strip method for measuring lactate in whole blood. Clin Chem. 1989;35(9):1992–4.
19. Kitchen S, Bazin S, Clayton EB. Eletroterapia : prática baseada em evidências. 2003. 712 p.
20. Ind I, Anvisa E. Neurodyn Ii. 2012;
21. Lima Neto EV de, Goldenberg A, Jucá MJ. Resultados imediatos da herniorrafia inguinal com anestesia local associada com sedação. Acta Cir Bras. 2003;18(5):478–84.
22. Gentil P, Oliveira E, Bottaro M. Time under tension and blood lactate response during four different resistance training methods. J Physiol Anthropol. 2006;25(5):339–44.
23. Domínguez R, Maté-Muñoz JL, Serra-Paya N, Garnacho-Castaño MV. Lactate Threshold as a Measure of Aerobic Metabolism in Resistance Exercise. Int J Sports Med. 2018;39(3):163–72.
24. Heck H, Mader A, Hess G, Mücke S, Müller R, Hollmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6(3):117–30.
25. Gentil P, Oliveira E, Fontana K, Molina G, De Oliveira RJ, Bottaro M. Efeitos agudos de vários métodos de treinamento de força no lactato sanguíneo e características de cargas em homens treinados recreacionalmente. Rev Bras Med do Esporte. 2006;12(6):303–7.
26. Hamada T, Kimura T, Moritani T, Hayashi T, Nakao K. Electrical stimulation enhances energy consumption, glycogen utilization and whole body glucose uptake in humans. Japanese J Phys Fit Sport Med. 2004;53(1):1–81.
27. Brunelli DT, Finardi EAR, Bonfante ILP, Gáspari AF, Sardeli A V., Souza TMF, et al. Acute low- compared to high-load resistance training to failure results in greater energy expenditure during exercise in healthy young men. PLoS One. 2019;14(11):1–14.
28. Scott, B. R., Slattery, K. M., Sculley, D. V., Lockhart, C., & Dascombe BJ. A p r m - l r e h. J Strength Cond Res 2017 31(7), 1973–1981 doi101519/jsc0000000000001649. 2017;31(7):1973–81.
29. Quiñonez M, González F, Morgado-Valle C, DiFranco M. Effects of membrane depolarization and changes in extracellular [K +] on the Ca2+ transients of fast skeletal muscle fibers. Implications for muscle fatigue. J Muscle Res Cell Motil. 2010;31(1):13–33.
30. Gorgey AS, Black CD, Elder CP, Dudley GA. Effects of electrical stimulation parameters on fatigue in skeletal muscle. J Orthop Sports Phys Ther. 2009;39(9):684–92.
31. Binder SA, Guerin T. Preservation of force output through progressive reduction of stimulation frequency in human quadriceps femoris muscle. Phys Ther. 1990;70(10):619–25.
32. Bridges CR, Clark BJ, Hammond RL, Stephenson LW. Skeletal muscle bioenergetics during frequency-dependent fatigue. Am J Physiol - Cell Physiol. 1991;260(3 29-3).
33. Russ DW, Vandenborne K, Binder-Macleod SA. Factors in fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol. 2002;93(2):469–78.
Publicado
2020-07-07
Seção
Artigos